

Specialist Talk

Efficient rehabilitation interventions in MS and novel directions

Prof. Peter Feys Rehabilitation Sciences & Physiotherapy HASSELT University – Belgium

The challenge of talking on MS rehabilitation

- Chronic disease
- 'Active' versus 'nonactive' disease
 - Relapses
 - Progression
- Motor learning potential & Neuroplasticity

Complexity in MS

76.4% Walking difficulty

ICF framework: What's related?

Psychological disease burden & Inactivity-related comorbidities

Figure 1. Lifetime prevalence of common comorbidities in people with MS, by age group.¹

What if one is not moving enough?

Leisure Time Spent Sitting in Relation to Total Mortality in a Prospective Cohort of US Adults

Alpa V. Patel*, Leslie Bernstein, Anusila Deka, Heather Spencer Feigelson, Peter T. Campbell, Susan M. Gapstur, Graham A. Colditz, and Michael J. Thun 100 95 Almost None of the Time Cumulative Survival (%) 90 1/4 of the Time 1/2 of the Time 184,190 participants 34 of the Time 85 Almost All of the Time 80 75 70 2 8 10 12 0 6 4 14 Follow-up Years

Am J Epidemiol 2010;172:419-429

Courtesy D. Hanssen (Uhasselt)

universiteit hasselt

SUMMARY SLIDE

Multi-dimensional ASSESSMENT

- 1. Recommendations
- 2. 'Novel' symptoms

Efficient Rehabilitation Interventions

- 1. Physical Exercise
- 2. Fatigue management
- 3. Selecting the right interventions for fatigue & cognition: APPECO

Novel directions

- 1. Upper extremity training
- 2. Technological-supported rehabilitation

11 1111 111

Multi-dimensional assessment recommendations

KNOWLEDGE IN ACTION

Feys, Eelen et al (2016) MSJ: the multi-disciplinary approach

Measuring balance, walking (endurance)

BBST25FWFES2/6MWT

Falls Efficacy scale

су

∆9,6/21 m

MSWS-12 (0-60)

- Standing
- Ability to run
- Need for support
- Moving around the home
- Concentration needed to walk
- Walking speed
- Maintaining balance
- Climbing stairs
- Walking distance
- Effort needed to walk
- Ability to walk
- Gait
 - ۵8-10 points

Novel measures: motor fatigability

Review

The Assessment of Motor Fatigability in **Persons With Multiple Sclerosis: A Systematic Review**

Deborah Severijns, PhD¹, Inge Zijdewind, PhD², Ulrik Dalgas, PhD³, Ilse Lamers, PhD¹, Caroline Lismont¹, and Peter Feys, PhD¹

Severijns et al, 2017, NNR.

Leone et al, 2015, NNR

Measuring balance, walking (endurance) & upper limb function

BBST25FWFES2/6MWT

Falls Efficacy scale

acy

۵9,6/21 m

MSWS-12

- Standing
- Ability to run
- Need for support
- Moving around the home
- Concentration needed to walk
- Walking speed
- Maintaining balance
- Climbing stairs
- Walking distance
- Effort needed to walk
- Ability to walk
- Gait

۵8-10 points

NHPT

MAM

۵20%

Measuring FATIGUE & COGNITIVE IMPAIRMENT

- FSS: Fatigue Severity
- FSMC: Fatigue Scale Motor Cognitive functioning
- Modified Fatigue Impact Scale (MFIS)
 38 cut-off for abnormal fatigue.
 Clinical meaningful change: 10 points

Physical part Psychological part Psychosocial part

BICAMS

Brief International Cognitive Assessment for MS www.bicams.net/ BICAMS

Symbol Digit Modalities test (SDMT) – *information processing speed*

California Verbal Learning test

Brief Visuospatial Memory test

Novel measure: Measuring COGNITIVE-MOTOR INTERFERENCE

MULTIPLE	ISM	
JOURNAL	14133	

Topical Review

Measuring the cost of cognitive-motor du tasking during walking in multiple sclero

Carmela Leone, Francesco Patti and Peter Feys

$$DTC = \frac{single \ task - dual \ task}{single \ task} x \ 100$$

Cognitive distractors:

- Substracting by 7 or 3

universiteit

⊾hasselt

KNOWLEDGE IN ACTION

- Word list generation
- Alternative alfabet

. . .

Leone, Feys et al (2014) MSJ Wadja et al (2014). Learmonth & Motl (2017) APRM

Take home Messages

Assessment

- A multi-dimensional assessment is required, also in early stage of MS
- There is international agreement on core outcome measures
- Novelties are quantifying symptoms as motor fatigability and cognitive-motor interference

SUMMARY SLIDE

Multi-dimensional ASSESSMENT

- 1. Recommendations
- 2. 'Novel' symptoms

Efficient Rehabilitation Interventions

- 1. Physical Exercise
- 2. Fatigue management
- 3. Selecting the right interventions for fatigue & cognition: APPECO

Novel directions

- 1. Upper extremity training
- 2. Technological-supported rehabilitation

Evidence in MS rehabilitation

11 111 1 1 111 1 11

Studies addressing 'Rehabilitation' AND 'Multiple Sclerosis'

Archives of Physical Medicine and Rehabilitation

journal homepage: www.archives-pmr.org Archives of Physical Medicine and Rehabilitation 2016;

REVIEW ARTICLE

Rehabilitation in Multiple Sclerosis: A Systematic Review of Systematic Reviews

Fary Khan, MBBS, MD, FAFRM (RACP), a,b,c Bhasker Amatya, MD, MPH^a

From the ^aDepartment of Rehabilitation Medicine, Royal Melbourne Hospital, Parkville, Victoria; ^bDepartment of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria; and ^cSchool of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.

Khan et al (2016) APRM

Systematic reviews included = 39

- Cochrane reviews: 15
- Other reviews: 24 (1 with 2 reports)

Evidence Summaries

Highest evidence

- Exercise therapy (walking & fatigue)
- Physical Therapy
- Fatigue management programs

Intervention	No studies, participants	Inpatient	Community	Long-term survivorship	GRADE
Multidisciplinary rehabilitation	9 RCTs, 1 CCT, 954		\rightarrow		Moderate
Physical therapy	76 trials (45 RCTs)			\longrightarrow	High
Progressive resistance training	6 RCTs, 6 non- RCTs, 289				Low
Strength training	5 RCTs, 2 CCTs 249		<u> </u>		Moderate
Exercise therapy (walking)	35 RCTs, 1255		_	\implies	High
Exercise therapy (fatigue)	60 RCTs, 2952		_	\longrightarrow	High
Physical therapy (balance)	11 RCTs, 340		<u> </u>		Low
Exercise therapy (depression)	15 RCTs, 591		\rightarrow		Low
Exercise therapy (cognition)	8 RCTs, 644		\rightarrow		Low
Respiratory muscle training	15 trials (6 RCTs)		\rightarrow		Low
Energy conservation	4 RCTs, 2 CCTs, 494				Moderat
нвот	9 RCTs, 504		\longrightarrow		Low
WBV	11 RCTs, 314		\longrightarrow		Low
Electrical stimulation	1 RCT, 40		\longrightarrow		Very low
Hippotherapy	3 non-RCTs, 36		\longrightarrow		Very los
от	96 trials		_		Low
Neuropsychological	20 RCTs, 986		-	\longrightarrow	Low
Cognitive rehabilitation	32 RCTs, 1527		_		Low
Cognitive Behavioural Therapy	7 RCTs		\rightarrow		Moderat
Memory rehabilitation	8 RCTs, 521		\longrightarrow		Low
Dietary intervention (PUFAs)	6 RCTs, 794		\longrightarrow		Low
Dietary intervention (Vitamin D)	1 RCT, 49		\longrightarrow		Very los
Vocational rehabilitation	1 RCT, 1 CCT, 80			\rightarrow	Low
Telerehabilitation	9 RCTs, 531			\rightarrow	Low
Fatigue management programs	18 trials, 895		_	\Longrightarrow	High
Upper limb rehab	41 trials (16 RCTs)				Low
Spasticity management	9 RCTs, 341		_	\rightarrow	Low

Moderate evidence

- Upper limb training
- Spasticity management
- Multi-disciplinary treatment
- Cognitive retraining
- Neuropsychological rehabilitation
- Energy conservation
- Vocational rehabiliation

Exercise Therapy

Personal View

Lancet Neurology 2017

Exercise in patients with multiple sclerosis

Robert W Motl, Brian M Sandroff, Gert Kwakkel, Ulrik Dalgas, Anthony Feinstein, Christoph Heesen, Peter Feys, Alan J Thompson

Impact of exercise in healthy subjects

Leisure Time Physical Activity of Moderate to Vigorous Intensity and Mortality: A Large Pooled Cohort Analysis

Steven C. Moore¹*, Alpa V. Patel², Charles E. Matthews¹, Amy Berrington de Gonzalez¹, Yikyung Park¹, Hormuzd A. Katki¹, Martha S. Linet¹, Elisabete Weiderpass^{3,4,5,6}, Kala Visvanathan⁷, Kathy J. Helzlsouer⁷, Michael Thun², Susan M. Gapstur², Patricia Hartge¹, I-Min Lee⁸

KNOWLEDGE IN ACTION

PLOS Medicine November 2012 | Volume 9 | Issue 11 | e1001335

Resistance training improves **muscle strength**

Improved muscle strenght

Changes in muscle fiber diameter & type

Changes in BNDF

Jorgerson, Daglas et al.(2017) J Neurol Sci Wens et al (2018) Eu J Neurol

Effect of resistance training on knee muscle strength

Largest effects in most Training effects proportional with training duration affected leg Effects Knee extension 45° Knee flexion 45° <<<<< 70 70 60 60 Change compared to baseline (%) 50 50 40 40 ■ EX weakest leg EX strongest leg 30 30 ■ CON weakest leg ■ CON strongest leg 20 20 10 10 0 12w 12w 24w 24w 6w 6w -10 -10

Percentage change of knee 45° muscle strength of exercised (EX) and sedentary (CON) MS patients after 6, 12 en 24 weeks of combined exercise or sendentarims, compared to baseline.

Wens et al (2014) PLOS ONE

Universiteit hasselt

Skilled supervision needed to avoid 'maladaptive learning' & harm

Compensations

Normal execution is possible

Neurobiology & exercise: Resistance training

Neuroprotective effect of exercise therapy

Brain volume decrease in waiting list control group

24 weeks Resistance training or 24 weeks 'waiting list control'/ Self-guided physical activity

hasselt

KNOWLEDGE IN ACTION

T0 - T24 T24 - T48 0.5 0.0 PBVC (%) PBVC (%) -0.5--1.0· -1 -1.5--2.0 -2 Waitlist Training Training Waitlist Self-guided PA PRT PRT Control universiteit

Kjolhede, Dalgas et al (2017) MSJ

Neurobiology & exercise: Improved Neural tract <u>structural integrity</u>

Multiple Sclerosis: Changes in Microarchitecture of White Matter Tracts after Training with a Video Game Balance Board¹

BALANCE TRAINING

Cross-over design in 27 pwMS (24 RRMS). 12 weeks of training.

Changes in microstructure of the superior cerebellar peduncles (DTI)

A MALTIPLE ADDRESS FOTHER PRACTICING THE HOLE ADDRESS TRUMPHARIZATION PROCESS ADDRESS WY CORE 200,001

Prosperini et al (2014) Radiology

111 Exercise improves physical fitness

Langeskov-Christensen, Daglas et al.(2015) Sport Med

Exercise improves physical fitness

Langeskov-Christensen, Daglas et al.(2015) Sport Med universiteit hasselt

111 Exercise therapy in advanced MS stadium

MULTIPLE 11 pwMS SCLEROSIS MSJ Short Report **JOURNAL** EDSS 6,5-8,5 Multiple Sciennit Journ Endurance training is feasible in severely 0.051-4 © The Author(s) 2013 Reprints and permi-CON(n=5)disabled patients with progressive all on alchnereal Permin DOI: 10.1177/1352458513505351 multiple sclerosis msj.sagepub.com EXE (n = 6)(\$SAGE 10 sessions ergometry during 4 weeks AG Skjerbæk¹, M Næsby¹, K Lützen¹, AB Møller^{2,4}, E Jensen¹, I Lamers⁵, E Stenager^{3,4} and U Dalgas² p=0.06 1600 1400

KNOWLEDGE IN ACTION

Sjerbaek, Dalgas et al (2013) MSJ

Take home Messages

Assessment

- A multi-dimensional assessment is required, also in early stage of MS
- Novelties are quantifying symptoms as motor fatigability and cognitive-motor interference

Rehabilitation

- A strong body of evidence for exercise therapy
- Exercise may be neuro-protective and neuro-restorative
- Exercise is effective across the disability spectrum

PATIENT ACTIVATION & BEHAVIOUR CHANGE

Quellenhof Centre, Bad Wildbad, Germany, 12/2011

- Adherence
- Self-Efficacy
- Behavioral change

Lifestyle physical activity in persons with multiple sclerosis: the new kid on the MS block

Robert W Moti

Neurobiology & exercise: Endurance training

MS 'start-to-run' 5 kilometer

Start-to-run 5km training program in one's own community 3x/week during 12 weeks

Training was remotely supervised by means of accelerometry.

Tests Training Event

Feys, Van Asch et al (2017) MSJ www.movetosport.be

MS 'start-to-run' 5 kilometer

Program personalized based on VO2max. Instructions weekly.

pplementary material

Figure 1. Illustration of the training protocol that was instructed to participants. Variations in baseline training protocol and progression were dependent or baseline aerobic capacity. All participants started with one week of exclusively walking.

Feys, Van Asch et al (2017) MSJ www.movetosport.be universiteit hasselt

MS 'start-to-run' 5 kilometer

Feys, Van Asch et al (2017) MSJ www.movetosport.be

Feys, Moumdjian, Eijnde, Wens, Van Wijmeersch, Popescu, Van Halewyck, Van Asch et al (2017) MSJ

MS 'start-to-run' 5 kilometer: RESULTS

15% drop-out due to time constraints, and mild injuries94% adherence to the training sessions

Positive effects in favour of EXP group

- Physical fitness
- 5x Sit-to-stand
- MSWS-12 walking ability
- FSMC fatigue scale for motor & cognitive function
- MSIS-29 quality of life
- Cognition: spatial recall test (visuospatial memory)
- Neurobiology: Pallidum (basal ganglia) brain nucleus involved in subtle regulation of voluntary movements that occur on the subconscious level

Multi-dimensional effects of exercise in persons with PROGRESSIVE TYPE OF MS

42 pwMS. EDSS 4-6. 8-10 weeks training (10% drop-out)

Cycling has best results on both aerobic fitness & walking distance.

Effects of exercise on COGNITION in persons with PROGRESSIVE TYPE OF MS

42 pwMS. EDSS 4-6.

8-10 weeks training (10% drop-out)

Cycling has best results on both learning & memory, and Alertness

> Universiteit hasselt KNOWLEDGE IN ACTION

Briken, Heesen et al (2014) MSJ

Take home Messages

Assessment

- A multi-dimensional assessment is required, also in early stage of MS
- Novelties are quantifying symptoms as motor fatigability and cognitive-motor interference

Rehabilitation

- A strong body of evidence for exercise therapy <u>with multi-dimensional</u> <u>effects including on fatigue & cognition</u>
- Exercise may be neuro-protective and <u>neuro-restorative</u>
- Exercise is effective across the disability spectrum

Evidence Summaries

Highest evidence

- Physical Therapy
- Exercise therapy (walking & fatigue)
- Fatigue management programs

Intervention	No studies, participants	Inpatient	Community	Lorg-term eurohomhip	GRADE.
Multidisciplinary rehabilitation	9 RCTs, 1 CCT, 954	_			Moderate
Physical therapy	76 trials (45 RCTs)		-		Hgh
Progressive resistance training	6 RCTs, 6 not- RCTs, 289				Low
Strength training	5 RCTs, 2 CCTs 249				Moderate
Exercise therapy (walking)	35 RCTs, 1255		_		High
Exercise therapy (fatigue)	60 RCTs, 2952		-		High
Physical therapy (balance)	11 RCTs, 340		<u> </u>		Low
Exercise therapy (depression)	15 RCTs, 591				Low
Exercise therapy (cognition)	8 RCTs, 644				Low
Respiratory muscle training	15 trials (6 RCTs)				Low
Energy conservation	4 RCTs, 2 OCTs, 494				Moderate
HBOT	9 RCTs, 504				Low
WEV	11 RCTs, 314				Low
Electrical stimulation	1 RCT, 40				Vary low
Hippotherapy	3 non-RCTs, 36				Vary low
OT	96 trials				Low
Neuropsychological	20 RCTs, 986		_		Low
Cognitive rehabilitation	32 RCTs, 1527		-		Low
Cognitive Behavioural Therapy	7 RCTs				Moderate
Momory rehabilitation	8 RCTs, 521				Low
Dietary intervention (PUFAs)	6 RCTs, 794				Low
Distary Intervention (Vitamin D)	1 RCT, 43				Very low
Vocational rehabilitation	1 RCT, 1 CCT, 80				Low
Telerohabilitation	9 RCTs, 531				Low
Faligue management programs	18 triais, 895	_	_		Hgh
Upper limb rehab	41 titals (16 RCTs)				Low
Spanticity management	9 RCTs, 341		_		Low

Moderate evidence

- Upper limb training
- Spasticity management
- Multi-disciplinary treatment
- Cognitive retraining
- Neuropsychological rehabilitation
- Energy conservation
- Vocational rehabiliation

Khan et al (2016) APRM

Multi-disciplinary approaches for fatigue One size does not fit all!

- Aerobic exercise
- Cognitive behavioural therapy
- Energy conservation programs
- Self-management programs
- Environmental modifications

How to find a best evidence-based intervention?

Established by European MS rehabilitation network (www.eurims.org)

Targeting FATIGUE & COGNITIVE FUNCTION

Results						
Intervention	N _{studies} Or N _{patients}	0	0	0	In favour of 📻 Control Intervention	
Cognitive behavioural therapy	4	Ť	*	*	• •	
Cognitive behavioural therapy	4	Å	*	*	• • •	
2010 Grossman P., Mindfullness training	164	*	*	*	→	
2012 Moss-Morris R., MS Invigor8 - Breaking the Cycle of Fatigue	45	Ŵ	*	*	• • •	
van den Akker LE, Cognitive Behavioural Therapy	90	*	*	*	•-••	www.appeco.net
2013 Thomas S., FACETS - Fatigue: Applying Cognitive behavioural and Energy effectiveness Techniques to lifeStyle	164	*	*	*	****	Applying
Other Rehabilitation interventions	11	ŝ	Ť	Ť	• • •	Applying
Exercise interventions	42	Ŷ	\overleftrightarrow	Ŵ	• •	Evidence with
H Alternative exercise interventions	5	$\sum_{i=1}^{n}$	$\hat{\mathbf{A}}$	Ň	• •	
Hultimodal exercise therapy (e.g. aerobic + resistance training)	9	Ŷ	Ŷ	Ŷ	••-•	clinical practice
Endurance training	11	$\stackrel{\sim}{\mathbf{x}}$	$\dot{\Sigma}$	$\stackrel{\wedge}{\simeq}$	••	
2012 Kargarfard M., Aquatic exercise training	21	Ň	Ň	$\sum_{i=1}^{n}$	\rightarrow	
2013 Ahmadi A., Aerobic Treadmill Training	31	بکر	$\sum_{i=1}^{n}$	Ň	→	
2004 Schulz K. H., Aerobic training	28	547	Ŵ	Ŵ	• •	

European network for best practice and research

SUMMARY SLIDE

Multi-dimensional ASSESSMENT

- 1. Recommendations
- 2. 'Novel' symptoms

Efficient Rehabilitation Interventions

- 1. Physical Exercise
- 2. Fatigue management
- 3. Selecting the right interventions for fatigue & cognition: APPECO

Novel directions

- 1. Upper extremity training
- 2. Technological-supported rehabilitation

An increasing research interest in upper limb rehabilitation in MS.

Spooren *et al. BMC Neurology* 2012, **12**:49 http://

May 2011. BMC

RESEARCH ARTICLE

Motor training programs of arm and hand in patients with MS according to different levels of the ICF: a systematic review

Annemie IF Spooren^{1,2,3,4*}, Annick AA Timmermans^{2,3†} and Henk AM Seelen^{2,3†}

Review

September 2016. NNR Upper Limb Rehabilitation in People With Multiple Sclerosis: A Systematic Review Neurorehabilitation and Neural Repair 1–21 © The Author(s) 2016 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1545968315624785 nnr.sagepub.com

BMC Neurology

Open Access

Ilse Lamers, PhD¹, Anneleen Maris, PhD¹, Deborah Severijns, MSc¹, Wouter Dielkens, MSc¹, Sander Geurts, MSc¹, Bart Van Wijmeersch, PhD^{1,2}, and Peter Feys, PhD¹

Content of therapy

- 30 studies, of which 11 (small) RCT
- Promising effects at the level of training (body function or activity level)

►hasselt

Editorial

Potential of robot-assisted therapy for disabled persons with MS

Peter Feys

Editorial 2016. MSJ

Book published in 2018

Robot-assisted rehabilitation in multiple sclerosis: Overview of approaches, clinical outcomes, and perspectives

CHAPTER

IΧ

Ilse Lamers*^{,†}, Peter Feys*, Eva Swinnen[‡]

Hasselt University, Hasselt, Belgium* Rehabilitation and MS center, Overpelt, Belgium[†] Vrije Universiteit Brussel, Brussel, Belgium[‡]

ROBOT-ASSISTED UPPER LIMB REHABILITATION

Brachio di Ferro – 2DOF

Haptic Master- 3DOF & I-TRAVLE

Armeo Spring - multiple joints

Armeo Spring- 3DOF & SAIL

END-EFFECTOR

EXOSKELETON

Unilateral and mainly proximal (shoulder-elbow) training systems

Different underlying training principles in software programs

Robot-assisted Upper Limb Training

Publication	N	Training	EDSS	Name of the device	Type of device	Significant treatment effects
Carpinella et al. [13]	7 pwMS 9 HC	8×1h over 2 weeks	5.7	Braccio di Ferro	End-effector 2DOF with haptic forces	Manual dexterity
Gijbels et al. [14]	9 pwMS	24×30' over 8weeks	7.9	Armeo Spring	Exoskeleton with antigravity support	Manual dexterity, proximal and distal upper limb capacity
Carpinella et al. [15] RCT	22 pwMS (11/11)	8×1h over 2 weeks	6.4-6.9	Braccio di Ferro	End-effector 2DOF with haptic forces	Tremor, manual dexterity, proximal and distal upper limb capacity
Feys et al. [16] RCT	17 pwMS (8/9)	24×30' over 8 weeks	7.3–8	HapticMaster/I- TRAVLE	End-effector 3DOF with haptic environment	More efficient movement execution measured with the system, no clinical effects
Sampson et al. [17]	5 pwMS	18×1h over 10weeks	NR	Armeo Spring/ SAIL System	FES with Exoskeleton 3DOF with antigravity support	Accuracy of tracking performance, amount of FES needed to perform the movements, range of motion, and motor control in the proximal upper limb
Maris et al. [18]	13 pwMS 14 stoke	18×1h over 8 weeks	6.5	HapticMaster/I- TRAVLE	End-effector 3DOF with haptic environment	Active shoulder range of motion, handgrip strength, perceived upper limb strength, proximal and distal upper limb capacity, speed and movement duration measured with the system

- Small sampled studies
- Pilot trials show beneficial effects of robot-assisted upper limb rehabilitation: movement efficiency, clinical effects on body function & activity level

• 2 RCT's

- No superiority of the robot training compared to conventional therapy however, effects may last longer
- Increased clinical effects if object manipulation is included

Robot-Assisted Gait Training (RAGT)

Powered Exoskeleton

Lokomat - Hocoma

Gait Trainer

Robot-assisted Gait Training

RAGT is

- Mostly clinically effective
- Mostly as effective as CWT (conventional walking training) for improving walking and QoL* (and other)
- Is well accepted by persons with MS

Publication	N	Training (RAGT)	EDSS (RAGT)	Robotic device	Туре	Significant treatment effects
Lo et al. [26] NNR—pilot RCT BWSTT and RAGT	13 (crossover design)	2×40'/week for 3weeks, 6 sessions	4.9	LOKOMAT	Exoskeleton	Walking speed (timed 25 ft walk), walking capacity (6- min walk distance), percentage of double support time, severity of MS (EDSS)
Pompa et al. [30] MSJ	13 (crossover design)	idem Lo et al. [26]	idem Lo et al. [26]	idem Lo et al. [26]	idem Lo et al. [26]	Quality of life
Beer et al. [31] MS-RCT RAGT versus CWT	35 (19 RAGT)	5x30' walking time/week for 3 weeks, 15 sessions	6.5	Lokomat	Exoskeleton	Walking speed, distance and knee extensor strength
Vaney et al. [32] NNR-RCT RAGT versus CWT	49 (26 RAGT)	3×30'/week for 3 weeks, 9 sessions	5.9	Lokomat	Exoskeleton	
Schwartz et al. [33] MSJ RCT RAGT versus CWT	32 (15 RAGT)	2-3×30' walking time/ week for 4 weeks, 12 sessions	6.3	Lokomat	Exoskeleton	Functional mobility, functional independence measure, overall disability
Ruiz et al. [34] JNPT	7 (immediate/ delayed treatment group)	2×20'/w for 2 months, 16 sessions	5	Lokomat	Exoskeleton	Walking distance, functional balance

Table 2 Overview of studies investigating robot-assisted gait training (RAGT)

Superiority of RAGT compared to CWT in those studies with higher EDSS (≥6)

- QoL physical domain
- Walking distance (but not always walking speed)
- Number of pwMS reaching clinical meaningful change in walking (2MWT, FAC) chance to change from 'dependent' to 'independent' walking (20meter walking)

Take home Messages

Assessment

- A multi-dimensional assessment is required, also in early stage of MS
- Novelties are quantifying symptoms as motor fatigability and cognitivemotor interference

Rehabilitation

- A strong body of evidence for exercise therapy with multi-dimensional effects including on fatigue & cognition
- Exercise may be neuro-protective and neuro-restorative
- Exercise is effective across the disability spectrum
- There are different types of effective fatigue rehabilitation programs
- Novelties are upper limb training & the technological-supported programs

Acknowledgments

The Flemish MS CENTERS Brasschaat, Melsbroek, Overpelt The MS centers CHU Liege-Esneux & CNRF Fraiture The European Rehabilitation in MS Netwerk RIMS

v.l.n.r.: prof. dr. P. Feys, dr. I. Lamers, dr. I. Baert, L. Moumdijan, J. Raats, F. Van Geel and R. Veldkamp.

