Progressive Resistance Training in Patients with Hip Dysplasia scheduled for Periacetabular Osteotomy

Louise Mortensen, Jeppe Schultz, Anton Elsner, Stig Storgaard Jakobsen, Kjeld Søballe, Julie Sandell Jacobsen, Signe Kierkegaard, Ulrik Dalgas, Inger Mechlenburg

Aarhus University Hospital

Department of Orthopedics Denmark

Disclosures

- <u>Related to present study:</u>
 - Grant from the Danish Rheumatism Association, The Bevica Foundation and Oda og Hans Svenningsen Foundation
 - No travel support
- Outside present study:
 - No conflicts of interest

Background

- Progressive resistance training (PRT) may be effective in:
 - Improving hip strength
 - Improving physical function
 - Reducing hip pain
 - Shown in patients with groin and hip OA-related pain
- No studies on patients with hip dysplasia

Holmich 1999, Kristensen 2012, Bennell 2011, Golightly 2012, Gill 2013, Hermann 2016, Steinhilber 2016

Purpose

- To examine if PRT is feasible in patients with hip dysplasia in terms of compliance, drop-outs, adverse events and pain responses to the training program
- A secondary purpose was to report data on changes in patient reported outcomes, functional tests and hip muscle strength

Design

- Feasibility study
- Inclusion criteria
- Diagnosed hip dysplasia and scheduled for periacetabular osteotomy
- Age \geq 18 years
- Lived within 50 km of Aarhus
- Able to transport herself to the training location

Exclution criteria

• Co-morbidities and history of previous surgical interventions affecting the function of their hip

Intervention

- 8-weeks of PRT with at total of 20 training sessions (5 sessions per 2 weeks)
- 5-10 min warm-up on a stationary bicycle
- 5 exercises: leg press, hamstring curl, walking lunges, knee extension, hip flexion

Week	1-2	3-4	5-6	7-8
Set	3	3	4	4
Repetitions	12	12	10	8
Intensity RM	15	12	10	8
Rest (in sec)	80	80	100	100

Exercises

4.

Results

Feasibility was assessed based on:

- VAS scores ≥50 (high-risk category)
- Drop-outs
- Adverse events
- Compliance to training $(\geq 80\%)$

Thomee A comprehensive treatment approach for patellofemoral pain syndrome in young women. Physical therapy. 1997;77(12):1690-703.

Test procedures

Pre- and post intervention:

- Copenhagen Hip and Groin Outcome Score (HAGOS)
- Functional tests:
 - Standing distance jump
 - Countermovement jump
- Muscle strength
 - Isometric
 - Isokinetic

16 patients analysed

lethods

Results

Feasibility outcomes - pain

Pain responses to intervention

Pain immediately after training

Pain 1 day after training

Results

Feasibility outcomes - adverse events

	Patients (n=16)		
Adverse Events	No. of	Patient	
	patients	fraction (%)	
No. of patients cancelled sessions due to	4 (5, 2, 3, 1)	25%	
pain (no. of sessions cancelled per person)			
Self-reported knee joint symptoms	3	18.8%	
Injured index finger	1	6.3%	

Secondary outcomes - HAGOS

Secondary outcomes - functional tests

lethods

Outcome	Pre-test	Post-test	Change	P- value
SDJ (cm)				
Affected side	93.7 [77.7, 109.8]	102 [88.3, 115.7]	8.3 [1.2, 15.3]	0.025
Non-affected side	91.4 [73.6, 109.1]	100.7 [84.1, 117.3]	9.3 [4.0, 14.6]	0.002
CMJ (cm)				
Affected side	10.2 [7.7, 12.8]	12.0 [9.8, 14.2]	1.8 [0.7, 2.9]	0.005
Non-affected	11.3 [9.0, 13.6]	12.2 [10.2, 14.3]	0.9 [-0.2, 2.0]	0.092
\frown	\frown			
23	23		3	
	λ			
		2	A	
H	H	9.	-12	
The second se	The second secon	Tr.	A	
63				

Introduction

Secondary outcomes - muscle strength

MVC (Nm)	pre-test	Post-test	Change	P-value
Isometric hip flexion				
Affected side	121.4 [95.4, 147,4]	125.8 [104.9, 146.7]	4.4 [-9.6, 18.4]	0.516
Non-affected side	124.7 [102.0, 147.4]	135.7 [110.9, 160.5]	11.0 [1.1, 21.0]	0.032
Isokinetic hip flexion				
Concentric				
Affected side†	115.7 [95.1, 136.2]	131.5 [109.1, 153.9]	15.8 [5.9, 25.8]	0.004
Non-affected side	121.5 [97.2, 145.7]	129.3 [108.9, 149.8]	7.9 [-6.0, 21.7]	0.245
VAS (mm) pain during MVC				
Affected side	25.2 [9.7, 40.5]	9.0 [0.9, 17.0]	-16.1 [-31.8, -0.4]	0.045
Non-affected side	8.7 [0.0, 18.6]	7.6 [0.0, 15.7]	-1.1 [-12.5, 10.4]	0.842

Conclusion

- Progressive resistance training in patients with hip dysplasia scheduled for PAO is feasible
- PRT may improve pain, patient reported outcomes, function and flexion muscle strength
- In future RCT, we plan to add hip abduction and extension exercises to increase hip muscle strength

Thank you

Inger.mechlenburg@clin.au.dk

