Progressive Resistance Training in Patients with Hip Dysplasia scheduled for Periacetabular Osteotomy

Louise Mortensen, Jeppe Schultz, Anton Elsner, Stig Storgaard Jakobsen, Kjeld Søballe, Julie Sandell Jacobsen, Signe Kierkegaard, Ulrik Dalgas, Inger Mechlenburg
Disclosures

• Related to present study:
 – Grant from the Danish Rheumatism Association, The Bevica Foundation and Oda og Hans Svenningsen Foundation
 – No travel support

• Outside present study:
 – No conflicts of interest
Background

- Progressive resistance training (PRT) may be effective in:
 - Improving hip strength
 - Improving physical function
 - Reducing hip pain

 - Shown in patients with groin and hip OA-related pain

- No studies on patients with hip dysplasia

Purpose

• To examine if PRT is feasible in patients with hip dysplasia in terms of compliance, drop-outs, adverse events and pain responses to the training program

• A secondary purpose was to report data on changes in patient reported outcomes, functional tests and hip muscle strength
Design

- **Feasibility study**

- **Inclusion criteria**
 - Diagnosed hip dysplasia and scheduled for periacetabular osteotomy
 - Age ≥ 18 years
 - Lived within 50 km of Aarhus
 - Able to transport herself to the training location

- **Exclusion criteria**
 - Co-morbidities and history of previous surgical interventions affecting the function of their hip
Intervention

- 8-weeks of PRT with at total of 20 training sessions (5 sessions per 2 weeks)

- 5-10 min warm-up on a stationary bicycle

- 5 exercises: leg press, hamstring curl, walking lunges, knee extension, hip flexion

<table>
<thead>
<tr>
<th>Week</th>
<th>1-2</th>
<th>3-4</th>
<th>5-6</th>
<th>7-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Repetitions</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Intensity RM</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Rest (in sec)</td>
<td>80</td>
<td>80</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Exercises

1.

2.

3.

4.

5.
Feasibility was assessed based on:

- VAS scores ≥50 (high-risk category)
- Drop-outs
- Adverse events
- Compliance to training (≥80%)

Test procedures

Pre- and post intervention:

- Copenhagen Hip and Groin Outcome Score (HAGOS)

- Functional tests:
 - Standing distance jump
 - Countermovement jump

- Muscle strength
 - Isometric
 - Isokineti
Feasibility outcomes

- 85 eligible patients, 17 included
- 1 dropped out
- Median age 28 years (22-40)
- 12/16 were women
- 12/16 had bilateral hip dysplasia
- 2/16 had previously PAO
- Average compliance 90.3%
Feasibility outcomes - pain

Pain responses to intervention

A) Pain immediately after training

B) Pain 1 day after training
Feasibility outcomes - adverse events

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>Patients (n=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients cancelled sessions due to pain</td>
<td>No. of patients</td>
</tr>
<tr>
<td>(no. of sessions cancelled per person)</td>
<td>Patient fraction (%)</td>
</tr>
<tr>
<td>Self-reported knee joint symptoms</td>
<td>4 (5, 2, 3, 1)</td>
</tr>
<tr>
<td>Injured index finger</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Secondary outcomes - HAGOS

- HAGOS scores for different outcomes:
 - Symptoms
 - Pain
 - ADL
 - Sport/rec
 - PA
 - QOL

Comparison between pre-test and post-test:
- Pre-test
- Post-test

Significance levels:
- * p < 0.05
- ** p < 0.01
Secondary outcomes - functional tests

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Change</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDJ (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected side</td>
<td>93.7 [77.7, 109.8]</td>
<td>102 [88.3, 115.7]</td>
<td>8.3 [1.2, 15.3]</td>
<td>0.025</td>
</tr>
<tr>
<td>Non-affected side</td>
<td>91.4 [73.6, 109.1]</td>
<td>100.7 [84.1, 117.3]</td>
<td>9.3 [4.0, 14.6]</td>
<td>0.002</td>
</tr>
<tr>
<td>CMJ (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected side</td>
<td>10.2 [7.7, 12.8]</td>
<td>12.0 [9.8, 14.2]</td>
<td>1.8 [0.7, 2.9]</td>
<td>0.005</td>
</tr>
<tr>
<td>Non-affected</td>
<td>11.3 [9.0, 13.6]</td>
<td>12.2 [10.2, 14.3]</td>
<td>0.9 [-0.2, 2.0]</td>
<td>0.092</td>
</tr>
</tbody>
</table>
Secondary outcomes - muscle strength

<table>
<thead>
<tr>
<th>MVC (Nm)</th>
<th>pre-test</th>
<th>Post-test</th>
<th>Change</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isometric hip flexion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected side</td>
<td>121.4 [95.4, 147.4]</td>
<td>125.8 [104.9, 146.7]</td>
<td>4.4 [-9.6, 18.4]</td>
<td>0.516</td>
</tr>
<tr>
<td>Non-affected side</td>
<td>124.7 [102.0, 147.4]</td>
<td>135.7 [110.9, 160.5]</td>
<td>11.0 [1.1, 21.0]</td>
<td>0.032</td>
</tr>
<tr>
<td>Isokinetic hip flexion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected side†</td>
<td>115.7 [95.1, 136.2]</td>
<td>131.5 [109.1, 153.9]</td>
<td>15.8 [5.9, 25.8]</td>
<td>0.004</td>
</tr>
<tr>
<td>Non-affected side</td>
<td>121.5 [97.2, 145.7]</td>
<td>129.3 [108.9, 149.8]</td>
<td>7.9 [-6.0, 21.7]</td>
<td>0.245</td>
</tr>
<tr>
<td>VAS (mm) pain during MVC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected side</td>
<td>25.2 [9.7, 40.5]</td>
<td>9.0 [0.9, 17.0]</td>
<td>-16.1 [-31.8, -0.4]</td>
<td>0.045</td>
</tr>
<tr>
<td>Non-affected side</td>
<td>8.7 [0.0, 18.6]</td>
<td>7.6 [0.0, 15.7]</td>
<td>-1.1 [-12.5, 10.4]</td>
<td>0.842</td>
</tr>
</tbody>
</table>
Conclusion

• Progressive resistance training in patients with hip dysplasia scheduled for PAO is feasible

• PRT may improve pain, patient reported outcomes, function and flexion muscle strength

• In future RCT, we plan to add hip abduction and extension exercises to increase hip muscle strength
Thank you
Inger.mechlenburg@clin.au.dk