Changed biomechanics after 4 weeks of running with increased step rate

Helledie, Mathias Ørum; Iversen, Pernille; Støve, Morten Pallisgaard; Larsen, Lars Henrik. University College of Northern Denmark, Department of Physiotherapy, Denmark.

Introduction

- Running is a popular activity but the risk of running
- related injuries (RRI) caused by overuse is high The majority of RRI affects the lower extremities
- Increased experimental step rate (cadence) manipulation
- in laboratory settings reduce vertical ground reaction force (VGRF), but the long term effect on self-selected cadence and lower extremity load is unknown

To study the long-term effect of increased running cadence training on lower extremity muscle activity and maximal vertical ground reaction force (MVGRF) during running.

potneses

Minimum 2 weekly running sessions with 10% increased cadence during 4 weeks results in decreased MVGRF, alters the late swing phase muscle activity in selected lower extremity muscles and increase the self-selected cadence.

Methods - procedure

Tibialis anterior (TA), Gastrocnemius lateralis (GL) and Gluteus Maximus (GM) muscle activity and VGRF in 16 (Fig. 1) injury free participants (age 24±3 years, height 174.3±6.7 cm, BMI 24.3±3.5) were measured before and after 4 weeks targeted running training with 10% increased step rate, supported by Setio[®] accelerometer based sensors and mobile application.

 \square

Fig. 1. The study group inclusion overview 18 participants met the inclusion criteria. Two participants completed less than two training sessions weekly during the intervention period and were excluded from the analyses.

Methods – analysis and statistics

instrumented treadmill (Zebris[®] FDM-T) gait and running during each phase was calculated across participants after Between baseline and re-test MVGRF was compared with t-test and RMS-EMG with Repeated measures ANOVA and

Results - resumed

Fig. 3 MVGRF Compared with baseline, MVGRF decreased significantly at retest.

RE-TEST

The observed changes confirmed a sustained change in running biomechanics after four weeks of targeted training. These changes altered the lower extremity load and may be a potential strategy to decrease the risk of running-related injuries in some runners. More research in the underlying biomechanics is required and the long-term effect needs to be explored in prospective intervention studies.

Acknowledgement

study

was supported by the Department of Physiotherapy, UCN Aalborg, Denmark.