See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328018301

ALTERNATIVE TREATMENTS TO CSI FOR GTPS

Presentation · October 2018

DOI: 10.13140/RG.2.2.10865.94562

CITATIONS 0 reads 13

4 authors, including:

Angela Fearon University of Canberra

41 PUBLICATIONS 333 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Conference presentation View project

DISTINCTIVE BY DESIGN

Θ

ALTERNATIVE TREATMENTS FOR GTPS

Notes can be found by searching "Researchgate Angie Fearon"

Dr Angie Fearon PhD, M(Phty), B(AppSc)Phty. University of Canberra

Angie.Fearon@Canberra.edu.au

SKIING IN AUSTRALIA

LEARNING OUTCOMES

- Known risk factors and impairments
- Treatment of GTPS

"Don't rest a tendon" Jill Cook Pragmatic approach to GTPS

Angie.Fearon@Canberra.edu.au

WHY DO WE CARE?

Activity limitations

Participation limitations

- Reduced full time work participation
- Likely reduced involvement in sport/fitness/walking

As a population...

- Increased BMI
- High levels of pain
- Sleep deprivation
- Higher rate of co-morbidities

Fearon et al 2014

DISTINCTIVE BY DESIGN

Assessment/diagnosis

Assessment for diagnosis

CLINICAL EXAMINATION Intra or extra articular hip problem? Hip ROM tests

GT palpation: -LR = 0.43

FADDIR -ve groin pain, -LR: 0.15 (Reiman 2016) FABER – pain location (lateral hip, GTPS OR 43.3) (Fearon 2012)

SLS (30sec) – if reproduces lateral pain - +LR=12, GT FADER – R +LR=6.6 (Grimaldi et al 2016)

Pre test prob ~50% (based on history) +ve GT palpation & SLS/FADER-R & FABER = ~96%

Increased hip adduction moment & movement

Allison et al 2016 a,b,c (Image from Robinson et al *under review*) Not necessarily apparent clinically (Fearon et al 2016)

Reduced Gmed/min activation variability

Allison et al 2017 Semciw et al 2014

Reduced hip abduction strength

Fearon et al 2016 Allison et al 2016 d Principles of Conservative Management (Tendons)

- Modify the risk factors ¹
- Pain education
- Manage the load ¹
- Strengthen the limb²
- Treat the co-morbidities ⁴
- Neuromuscular control training ⁵
- Review the progress

"Don't rest a tendon" Jill Cook

¹Cook and Purdam, 2013; ²Ganderton et al 2018, ³Mellor et al 2018; ⁴Sayegh et al., 2004, ⁵Rio et al, 2016

What are Risk Factors for Tendinopathy? **X** UNIVERSITY OF Repeat participation \leq Adaptation Exposure to Age¹ external risk **Events** Adiposity² No Systemic injury disease³ Intrinsic V Susceptible Predisposing risk N/M control¹ factors person Recovery factors Biomechanics³ Inciting Injury Strength¹ event No recovery Genes³ No participation Mechanism of injury, Risk factors proximity to injury proximity to outcome

FIXED RISK FACTORS

- Female
- >40 years of age

Tortolani et al 2002; Segal et al 2007

OR of neck/shaft angle <134° 3.33 GTR; 1.4 GTPS; 0.85 OA Fearon et al 2012

MODIFIABLE RISK FACTORS

FIGURE 2. Positional and bone factors influencing compression at the lateral hip. (A) The effect of lateral shift and lateral tilt of the pelvis, both resulting in hip adduction and the ITB wrapping more firmly around the greater trochanter, compressing the underlying soft tissues. (B) The effect of a lower neck shaft angle (cxav ara), resulting in higher compressive forces at the greater trochanter.⁷ The upper gluteus maximus and vastus lateralis have been omitted for clarity. Abbreviations: GMed, gluteus medius; GMin, gluteus minimus; ITB, iliotibial band; TFL, tensor fascia lata.

Grimaldi and Fearon 2015

Increased compression of ITB on GT with every degree of Addn.

At 0° = 4N

At 10° = 36N

At 40° = 106N

(Birnbaum et al 2004)

- Increase adiposity at GT
- LBP (Fearon et al 2012)

Anything that increases

- Compression of Gmed and min tendons
- ADd
 ADd
 May give rise to GTPS

Modify the risk factors

Angie Fearon afearon.au@gmail.com

Manage the Load

Passive Loading

Loading the tendon passively

- Standing
- Sitting
- Lying

Active Loading

Loading the tendon over 72 hours

- Stairs
 - Hills

_

Taping

Robinson et al under review

TAPING

Single blinded cross over trial Research Questions:

 Does Dynamic Tape (DT) reduce Hip Adduction Moment, Hip Adduction Movement, Internal Rotation, Pelvic Obliquity, Trunk Lateral Flexion, Pelvic Translation
 Does DT provide point in time pain relief?

50 Women with GTPS

Three walking trails with VICON system

baseline/ Trial 1/Trial 2

Tape order randomised into Active or Sham for Trial 1.

TAPING

Anchor the ends 20% stretch Maintain and even pull

Principles of Conservative Management

- Modify the risk factors ¹
- Pain education
- Manage the load ¹
- Strengthen the limb²
- Treat the co-morbidities ⁴
- Neuromuscular control training ⁵
- Review the progress

How much are they really doing? Sleeping retraining

Sitting, sit to stand retraining Gait retraining

- Prone
- ¾ prone
- ¾ supine

Grimaldi and Fearon 2016

¹Cook and Purdam, 2013; ²Ganderton et al 2018, ³Mellor et al 2018; ⁴Sayegh et al., 2004, ⁵Rio et al, 2016

Strengthen the limb

Deal with the impairments you find

- Hip abduction strength
- ? Lateral rotation
- ? Hip extension

ISOMETRICS vs

ISOTONIC??

STRENGTH EVIDENCE

Mellor et al 2018

Ganderton et al 2018

TABLE 4. FIFTY TWO-WEEK VARIABLES				
		$\frac{GLoBE (n=38)}{n/37^{a}(\%)}$	$\frac{Sham (n = 43)}{n/43(\%)}$	Chi squared
52-week variables				
Continuation of exercises	Yes No	18 (48.6) 19 (51.4)	17 (39.5) 26 (60.5)	0.413
Injection therapy	None CSI PRP/ABI	30 (81.1) 6 (16.2) 1 (2.7)	36 (83.7) 7 (16.3) 0 (0)	0.776 ^b
Pain level	Increased Decreased No change	4 (10.8) 16 (43.2) 17 (45.9)	4 (9.3) 22 (51.2) 17 (39.5)	0.763 ^b
Hip surgical intervention	Yes No	0 (0) 37 (100)	1 (2.3) 42 (97.7)	1.00 ^b

Fig 2 | Primary outcome measure—global rating of change in hip condition (GROC). Proportion (%) of participants in each group reporting "moderately better," "much better," or "very much better" on GROC (that is, defined as success) over time. Trial groups were education plus exercise (EDX), corticosteroid injection use (CSI), or wait and see approach (WS). Supplementary figure S6 shows data plot of all GROC categories

Strength and Education was provided in both studies

Neuro-muscular Control (motor control training)

Do they have enough strength to do the movement? Do they have the control to do the movement?

Can they put it together? Motor skill training

Treat the co-mobidities

Up to 35% have LBP

Faster recovery if you treated the Lx Sayegh et al 2004

Overweight/obese & diabetes

Tilley et al 2015 Ranger et al 2016 Gaida et al 2012

Psycho-social Address

What if they are not getting better?

Re-visit

- What activities they are doing or not doing?
- Are they doing the exercises?
 - at all
 - correctly (technique)
- monitoring the total tendon load

Re-assess

- clinically ms/joints/strength balance
- the risk factors
- biomechanics
- the co-morbidities
- Re-consider the treatment options
- Re-consider the diagnosis

In summary

- Pain can confuse the clinical assessment
 - Patient reports
 - Clinician interpretation
- Clear any red flags
- Settle the pain/anxiety/ms spasm (what is driving the pain?)
- Re-assess & re-evaluate
- Ask for help (use your networks)
- Make a progressive plan with your patient

